Impact of Binary Logging on INSERT

This section provides a tutorial example to demonstrate the performance impact of binary logging, about 50% of execution time reduction on INSERT and other data change statements.

What Is Binary Logging? Binary logging is feature in MySQL server that logs “events” that describe database changes such as table creation operations or changes to table data.

Binary logging is turned on by default in MySQL server. You can run the "mysqlbinlog" command to view its log files. For example:

herong$ sudo /usr/bin/mysqlbinlog --start-position=7413281 \
  /var/lib/mysql/binlog.000030 | more

/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=1*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
DELIMITER /*!*/;
# at 156
#211112 17:50:54 server id 1  end_log_pos 125 CRC32 0x09c34d76
Start: binlog v 4, server v 8.0.21 created 211112 17:50:54 at startup
# Warning: this binlog is either in use or was not closed properly.
ROLLBACK/*!*/;
BINLOG '
/jiOYQ8BAAAAeQAAAH0AAAABAAQAOC4wLjIxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAD+OI5hEwANAAgAAAAABAAEAAAAYQAEGggAAAAICAgCAAAACgoKKioAEjQA
CigBdk3DCQ==
'/*!*/;
# at 7413281
#211116 13:24:34 server id 1  end_log_pos 7413332 CRC32 0x3ae8bf07 \
  Table_map: `test`.`Tests` mapped to number 181
# at 7413332
#211116 13:24:34 server id 1  end_log_pos 7413372 CRC32 0x06659132 \
  Write_rows: table id 181 flags: STMT_END_F

BINLOG '
kkCTYRMBAAAAMwAAAFQecQAAALUAAAAAAAEABHRlc3QABVRlc3RzAAEDAAEBAQAHv+g6
kkCTYR4BAAAAKAAAAHwecQAAALUAAAAAAAEAAgAB/wAAAAAAMpFlBg==
'/*!*/;
...

The binary log files generated by the binary log feature are serving two important purposes:

There are 2 system variables that turns on and off binary logging:

Obviously, running MySQL server with binary logging enabled makes performance slightly slower. Here is what I did to find out the impact of binary logging on INSERT statements used in previous tutorials.

1. Turn off binary logging and create the "Tests" table again.

mysql> SET sql_log_bin = 0;

mysql> CREATE TABLE Tests (Quantity INTEGER);
Query OK, 0 rows affected (0.30 sec)

2. Turn on query profiling and run some INSERT statements:

mysql> SET SESSION profiling = 1

mysql> INSERT INTO Tests VALUES (FLOOR(1+RAND()*1000));
Query OK, 1 row affected (0.03 sec)

mysql> INSERT INTO Tests VALUES (FLOOR(1+RAND()*1000));
Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO Tests VALUES (FLOOR(1+RAND()*1000));
Query OK, 1 row affected (0.03 sec)

3. Get a list of profiled queries. The average of execution time is about still about 55 ms.

mysql> SHOW PROFILES;

Query_ID Duration   Query
-------- ---------- -----------------------------------------------
...
      16 0.03504750 INSERT INTO Tests VALUES (FLOOR(1+RAND()*1000))
      17 0.02237725 INSERT INTO Tests VALUES (FLOOR(1+RAND()*1000))
      18 0.02602950 INSERT INTO Tests VALUES (FLOOR(1+RAND()*1000))
..

4. Get Profiling details on the query 16:

mysql> SHOW PROFILE CPU, BLOCK IO, PAGE FAULTS, SWAPS FOR QUERY 16;

Status                        Duration CPU_user/system   Block_in/0ut P_F_major/minor Swaps
----------------------------- -------- --------/-------- --------/--- ---------/----- -----
starting                      0.000059 0.000052/0.000006        0/  0         0/    0     0
Executing hook on transaction 0.000004 0.000004/0.000001        0/  0         0/    0     0
starting                      0.000006 0.000006/0.000000        0/  0         0/    0     0
checking permissions          0.000005 0.000004/0.000001        0/  0         0/    0     0
Opening tables                0.000022 0.000020/0.000002        0/  0         0/    0     0
init                          0.000007 0.000006/0.000001        0/  0         0/    0     0
System lock                   0.000007 0.000006/0.000000        0/  0         0/    0     0
update                        0.000056 0.000051/0.000006        0/  0         0/    0     0
end                           0.000004 0.000003/0.000000        0/  0         0/    0     0
query end                     0.000003 0.000003/0.000001        0/  0         0/    0     0
waiting for handler commit    0.034835 0.000862/0.000000        0/  8         0/    0     0
closing tables                0.000020 0.000018/0.000002        0/  0         0/    0     0
freeing items                 0.000018 0.000016/0.000002        0/  0         0/    0     0
cleaning up                   0.000008 0.000007/0.000000        0/  0         0/    0     0

Cool. The execution is reduced by 50%. The main difference is at the "waiting for handler commit" step:

mysql> SHOW PROFILE CPU, BLOCK IO, PAGE FAULTS, SWAPS FOR QUERY 16;

Status                        Duration CPU_user/system   Block_in/0ut P_F_major/minor Swaps
----------------------------- -------- --------/-------- --------/--- ---------/----- -----

with binary logging off
waiting for handler commit    0.034835 0.000862/0.000000        0/  8         0/    0     0

with binary logging on:
waiting for handler commit    0.062925 0.000161/0.002778        0/ 40         0/    0     0

Conclusion: if you are not doing any database replication and have frequent backups, you can turn off binary logging to reduce execution time of INSERT and other data change statements by 50%. The only risk is losing data changes occurred since your last backup. You can manage this risk by re-doing those changes.

Table of Contents

 About This Book

 Introduction of SQL

 MySQL Introduction and Installation

 Introduction of MySQL Programs

 PHP Programs and MySQL Server

 Perl Programs and MySQL Servers

 Java Programs and MySQL Servers

 Datatypes and Data Literals

 Operations and Expressions

 Character Strings and Bit Strings

 Commonly Used Functions

 Table Column Types for Different Types of Values

 Using DDL to Create Tables and Indexes

 Using DML to Insert, Update and Delete Records

 Using SELECT to Query Database

 Window Functions for Statistical Analysis

 Use Index for Better Performance

 Transaction Management and Isolation Levels

 Locks Used in MySQL

 Defining and Calling Stored Procedures

 Variables, Loops and Cursors Used in Stored Procedures

 System, User-Defined and Stored Procedure Variables

 MySQL Server Administration

 Storage Engines in MySQL Server

 InnoDB Storage Engine - Primary and Secondary Indexes

Performance Tuning and Optimization

 Performance of Inserting Integers to MySQL Database

 "SHOW PROFILE" - Query Profiling

Impact of Binary Logging on INSERT

 Impact of InnoDB Log Buffer on INSERT

 Performance Comparison of Inserting Integers vs. Strings

 Bulk Changes on Large Tables

 MySQL Server on macOS

 Installing MySQL Server on Linux

 Connection, Performance and Second Instance on Linux

 Archived Tutorials

 References

 Full Version in PDF/EPUB