Moving Frames and Galilean Transformation

This section provides a quick introduction of the Galilean transformation between two frames that are move relative to each other.

In previous sections, we learned how to setup a spacetime coordinate system for a single reference frame. Now let's look at how to setup spacetime coordinate systems for two reference frames.

A simple case of two reference frames is that one frame is relatively moving from other frame at a constant speed. Here is a thought experiment example:

Now let's ask a simple question. If we consider a stationary object O on the ground, Bob observes (X,T) as the coordinates of object O at time T in his stationary frame, while Amy observes (X',T') as the coordinates of the same object at the same moment in her moving frame, what would be the relation between (X,T) and (X',T')?

The answer is also simple in Newtonian physics:

T' = T                             # time is an invariant
X' = X - v*T                       # Galilean transformation

As you can see, the Galilean transformation formula perfectly matches assumptions used in Newtonian physics, in which time passes by at the same rate in all frames and spacial coordinates are linearly related to each other between any two frames.

The above thought experiment can be easily presented in two separated diagrams shown below. One represents Bob's stationary frame. And the other represents Amy's moving frame.

Notice that in Bob's frame, the world line of Bob follows the t axis assuming that he stays at x=0. The world line of object O is vertical line at x=X. The world line of Amy is diagonal line starting from the origin, assuming she is there at t=0.

In Amy's frame, the world line of Amy follows the t' axis. World lines of object O and Bob are moving backward.

Moving Frames and Galilean Transformation
Moving Frames and Galilean Transformation

Table of Contents

 About This Book

 Introduction of Space

 Introduction of Frame of Reference

 Introduction of Time

 Introduction of Speed

 Newton's Laws of Motion

 Introduction of Special Relativity

 Time Dilation in Special Relativity

 Length Contraction in Special Relativity

 The Relativity of Simultaneity

Introduction of Spacetime

 What Is Spacetime

 What Is World Line

 What Is Light Cone

Moving Frames and Galilean Transformation

 Galilean Diagram of Moving Frames

 Minkowski Spacetime and Diagrams

 Introduction of Hamiltonian

 Introduction of Lagrangian

 Introduction of Generalized Coordinates

 Phase Space and Phase Portrait

 References

 Full Version in PDF/ePUB