"secp256k1" - For 256-Bit ECC Keys

This section describes 'secp256k1' elliptic curve domain parameters for generating 256-Bit ECC Keys as specified by secg.org.

What Is "secp256k1"? "secp256k1" is a specific elliptic curve and associated domain parameters selected and recommended by SECG (Standards for Efficient Cryptography Group). See "SEC 2: Recommended Elliptic Curve Domain Parameters" at secg.org/sec2-v2.pdf.

The "p256k1" part of the "secp256k1" name indicates:

p     Field type = Prime field
256   Key size = 256
k     Curve type = Koblitz curve
1     Sequence = 1

"secp256k1" domain parameters (p, a, b, G, n, h)

p: The modulo used to specify the reduced elliptic curve group:

p = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 - 1
  = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F

a: The first coefficient of the elliptic curve:

a = 0x00

b: The second coefficient of the elliptic curve:

b = 0x07

G: The generator (base point) of the subgroup:

G =(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
    0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)

n: The order of the subgroup:

    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141

h: The cofactor of the subgroup:

h = 1

Verify domain parameters with Python - G is on the curve.

herong> python

>>> p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
>>> a = 0x00
>>> b = 0x07
>>> G =(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
...     0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)

>>> G[1]**2 % p == (G[0]**3 + a*G[0] + b) % p
True

Generate a "secp256k1" key pair with OpenSSL

herong> openssl ecparam -genkey -name secp256k1 \
  -out secp256k1.pem -param_enc explicit

herong> openssl ec -in secp256k1.pem -noout -text

Private-Key: (256 bit)
priv:
    4e:ac:29:11:6c:7c:f6:de:aa:31:a0:8a:80:37:c5:
    ae:3d:72:46:8d:87:a8:48:7b:69:5b:d0:74:0a:f1:
    7a:e5
pub:
    04:9e:89:ef:e1:f6:76:6e:01:3d:aa:21:3a:6c:3a:
    a8:98:20:8f:24:e2:23:e2:c8:88:b3:da:48:5c:9e:
    16:82:5d:14:c0:60:c9:14:d5:5a:ef:7e:6c:33:30:
    78:4e:de:0e:b0:00:4d:00:e3:23:12:61:e8:00:fa:
    a8:47:0b:3c:6c
Field Type: prime-field
Prime:
    00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
    ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:fe:ff:
    ff:fc:2f
A:    0
B:    7 (0x7)
Generator (uncompressed):
    04:79:be:66:7e:f9:dc:bb:ac:55:a0:62:95:ce:87:
    0b:07:02:9b:fc:db:2d:ce:28:d9:59:f2:81:5b:16:
    f8:17:98:48:3a:da:77:26:a3:c4:65:5d:a4:fb:fc:
    0e:11:08:a8:fd:17:b4:48:a6:85:54:19:9c:47:d0:
    8f:fb:10:d4:b8
Order:
    00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
    ff:fe:ba:ae:dc:e6:af:48:a0:3b:bf:d2:5e:8c:d0:
    36:41:41
Cofactor:  1 (0x1)

The printed domain parameters (Prime, A, B, Generator, Order, Cofactor) match well with (p, a, b, G, n, h) specified by secg.org. Remember that OpenSSL prints "Generator" as 0x04<G.x><G.y>.

Exercise: Verify all "prime field" and "Koblitz curves": secp192k1, secp224k1, and secp256k1 specified by secg.org.

Table of Contents

 About This Book

 Geometric Introduction to Elliptic Curves

 Algebraic Introduction to Elliptic Curves

 Abelian Group and Elliptic Curves

 Discrete Logarithm Problem (DLP)

 Finite Fields

 Generators and Cyclic Subgroups

 Reduced Elliptic Curve Groups

 Elliptic Curve Subgroups

 tinyec - Python Library for ECC

 EC (Elliptic Curve) Key Pair

 ECDH (Elliptic Curve Diffie-Hellman) Key Exchange

 ECDSA (Elliptic Curve Digital Signature Algorithm)

 ECES (Elliptic Curve Encryption Scheme)

 EC Cryptography in Java

Standard Elliptic Curves

 What Are Standard Elliptic Curves

 "openssl ecparam -list_curves" - Curves Supported by OpenSSL

 "secp256r1" - For 256-Bit ECC Keys

"secp256k1" - For 256-Bit ECC Keys

 "sect283r1" - For 256-Bit ECC Keys

 "brainpoolP256r1"“ - For 256-Bit ECC Keys

 "brainpoolP256t1"“ - For 256-Bit ECC Keys

 Terminology

 References

 Full Version in PDF/EPUB