EC Cryptography Tutorials - Herong's Tutorial Examples - v1.03, by Herong Yang
"brainpoolP256t1"“ - For 256-Bit ECC Keys
This section describes 'brainpoolP256t1' elliptic curve domain parameters for generating 256-Bit ECC Keys as specified by RFC 5639.
What Is "brainpoolP256t1"? "brainpoolP256t1" is a specific elliptic curve and associated domain parameters selected and recommended in "RFC 5639 - Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation" at https://datatracker.ietf.org/doc/html/rfc5639.
The "P256t1" of the "brainpoolP256t1" name indicates:
P Field type = Prime field 256 Key size = 256 t Curve type = Twisted curve 1 Cofactor = 1
"brainpoolP256t1" is a twist to "brainpoolP256r1" Their domain parameters (p, a, b, G, n, h) are related as shown below:
brainpoolP256t1.p = brainpoolP256r1.p brainpoolP256t1.a = brainpoolP256r1.a*Z**4 brainpoolP256t1.b = brainpoolP256r1.b*Z**6 brainpoolP256t1.G[0] = brainpoolP256r1.G[0]*Z**2 brainpoolP256t1.G[1] = brainpoolP256r1.G[1]*Z**3 brainpoolP256t1.n = brainpoolP256r1.n brainpoolP256t1.h = brainpoolP256r1.h where: Z = 0x3E2D4BD9597B58639AE7AA669CAB9837CF5CF20A2C852D10F655668DFC150EF0
Calculate "brainpoolP256t1" domain parameters
p: The modulo used to specify the reduced elliptic curve group:
p = brainpoolP256r1.p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377
a: The first coefficient of the elliptic curve:
a = brainpoolP256r1.a*Z**4 = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5374 Because brainpoolP256r1.a is well selected, we also have: a is congruent to -3 mod p a%p = -3%p
b: The second coefficient of the elliptic curve:
b = brainpoolP256r1.b*Z**6 = 0x662C61C430D84EA4FE66A7733D0B76B7BF93EBC4AF2F49256AE58101FEE92B04
G: The generator (base point) of the subgroup:
G =(brainpoolP256r1.G[0]*Z**2, brainpoolP256r1.G[1]*Z**3) =(0xA3E8EB3CC1CFE7B7732213B23A656149AFA142C47AAFBC2B79A191562E1305F4, 0x2D996C823439C56D7F7B22E14644417E69BCB6DE39D027001DABE8F35B25C9BE)
n: The order of the subgroup:
n = brainpoolP256r1.n = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7
h: The cofactor of the subgroup:
h = brainpoolP256r1.h = 1
Verify domain parameters with Python - G is on the curve.
herong> python >>> p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377 >>> a = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5374 >>> b = 0x662C61C430D84EA4FE66A7733D0B76B7BF93EBC4AF2F49256AE58101FEE92B04 >>> G =(0xA3E8EB3CC1CFE7B7732213B23A656149AFA142C47AAFBC2B79A191562E1305F4, ... 0x2D996C823439C56D7F7B22E14644417E69BCB6DE39D027001DABE8F35B25C9BE) >>> G[1]**2 % p == (G[0]**3 + a*G[0] + b) % p True
Verify "brainpoolP256t1" is a twist to "brainpoolP256r1"
herong> more brainpoolP256.py # brainpoolP256.py # Copyright (c) HerongYang.com. All Rights Reserved. # rp = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377 ra = 0x7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9 rb = 0x26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6 rG =(0x8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262, 0x547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997) rn = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7 rh = 1 tp = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377 ta = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5374 tb = 0x662C61C430D84EA4FE66A7733D0B76B7BF93EBC4AF2F49256AE58101FEE92B04 tG =(0xA3E8EB3CC1CFE7B7732213B23A656149AFA142C47AAFBC2B79A191562E1305F4, 0x2D996C823439C56D7F7B22E14644417E69BCB6DE39D027001DABE8F35B25C9BE) tn = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7 th = 1 Z = 0x3E2D4BD9597B58639AE7AA669CAB9837CF5CF20A2C852D10F655668DFC150EF0 print(ta == -3 % rp) print(tp == rp) print(ta == ((Z**4)*ra) % rp) print(tb == ((Z**6)*rb) % rp) print(tG[0] == rG[0]*Z**2 % rp) print(tG[1] == rG[1]*Z**3 % rp) print(tn == rn) print(th == th) herong> python brainpoolP256.py True True True True True True True True
Generate a "brainpoolP256t1" key pair with OpenSSL
herong> openssl ecparam -genkey -name brainpoolP256t1 \ -out brainpoolP256t1.pem -param_enc explicit herong> openssl ec -in brainpoolP256t1.pem -noout -text Private-Key: (256 bit) priv: 2e:6d:c1:d5:6f:32:3d:bd:ea:30:66:8c:55:5f:99: b3:6c:f9:d3:6a:fa:1c:4f:1c:a2:ee:24:b3:14:c4: da:66 pub: 04:06:06:97:ad:f4:7c:a7:70:86:e2:4d:1c:6f:50: f8:a5:be:98:b9:cc:14:46:1d:db:28:dc:9f:58:06: 3f:b8:b8:80:47:8f:ed:4c:c7:91:d5:8e:2f:f5:76: 1c:d0:1b:fc:45:16:01:ee:d0:df:2e:77:23:b7:60: 5e:1b:1f:23:c8 Field Type: prime-field Prime: 00:a9:fb:57:db:a1:ee:a9:bc:3e:66:0a:90:9d:83: 8d:72:6e:3b:f6:23:d5:26:20:28:20:13:48:1d:1f: 6e:53:77 A: 00:a9:fb:57:db:a1:ee:a9:bc:3e:66:0a:90:9d:83: 8d:72:6e:3b:f6:23:d5:26:20:28:20:13:48:1d:1f: 6e:53:74 B: 66:2c:61:c4:30:d8:4e:a4:fe:66:a7:73:3d:0b:76: b7:bf:93:eb:c4:af:2f:49:25:6a:e5:81:01:fe:e9: 2b:04 Generator (uncompressed): 04:a3:e8:eb:3c:c1:cf:e7:b7:73:22:13:b2:3a:65: 61:49:af:a1:42:c4:7a:af:bc:2b:79:a1:91:56:2e: 13:05:f4:2d:99:6c:82:34:39:c5:6d:7f:7b:22:e1: 46:44:41:7e:69:bc:b6:de:39:d0:27:00:1d:ab:e8: f3:5b:25:c9:be Order: 00:a9:fb:57:db:a1:ee:a9:bc:3e:66:0a:90:9d:83: 8d:71:8c:39:7a:a3:b5:61:a6:f7:90:1e:0e:82:97: 48:56:a7 Cofactor: 1 (0x1)
The printed domain parameters (Prime, A, B, Generator, Order, Cofactor) match well with (p, a, b, G, n, h) specified by RFC 5639. Remember that OpenSSL prints "Generator" as 0x04<G.x><G.y>.
Exercise: Verify all "prime field" and "regular" curves: brainpoolP160t1, brainpoolP192t1, brainpoolP224t1, brainpoolP256t1, brainpoolP320t1, brainpoolP384t1, and brainpoolP512t1 specified by RFC 5639.
Table of Contents
Geometric Introduction to Elliptic Curves
Algebraic Introduction to Elliptic Curves
Abelian Group and Elliptic Curves
Discrete Logarithm Problem (DLP)
Generators and Cyclic Subgroups
tinyec - Python Library for ECC
ECDH (Elliptic Curve Diffie-Hellman) Key Exchange
ECDSA (Elliptic Curve Digital Signature Algorithm)
ECES (Elliptic Curve Encryption Scheme)
What Are Standard Elliptic Curves
"openssl ecparam -list_curves" - Curves Supported by OpenSSL
"secp256r1" - For 256-Bit ECC Keys
"secp256k1" - For 256-Bit ECC Keys
"sect283r1" - For 256-Bit ECC Keys
"brainpoolP256r1"“ - For 256-Bit ECC Keys