EC Cryptography Tutorials - Herong's Tutorial Examples - v1.03, by Herong Yang
What Is Abelian Group
This section describes Abelian Group, which a set of elements with a binary operation satisfing 5 conditions.
What Is Abelian Group? An Abelian Group is a set, G, of elements with a binary operation, F(), that satisfy the following 5 conditions:
1. Closure - The result, R, of F() of any given two elements, P and Q, in G must be an element in G. In other words:
R = F(P, Q) in G, if P and Q are in G.
2. Commutativity - The result of the operation is not changing, when the order of given two elements is changed. In other words:
F(P, Q) = F(Q, P) for any given two points.
3. Associativity -
F(F(P, Q), S) = F(P, F(Q, S))
4. Identity Element - A special element called identity element, I, exists with the following property:
F(P, I) = P
5. Symmetry - Every element P has an symmetric element (or inverse element) Q with the following property:
F(P, Q) = I
Good introductions of groups can be found in "Introduction to Finite Fields" by Yunghsiang S. Han at http://web.ntpu.edu.tw/~yshan/algebra.pdf, and in "BSI TR-03111 Elliptic Curve Cryptography, Version 2.10" at bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_pdf.pdf.
Table of Contents
Geometric Introduction to Elliptic Curves
Algebraic Introduction to Elliptic Curves
►Abelian Group and Elliptic Curves
Niels Henrik Abel and Abelian Group
Multiplicative Notation of Abelian Group
Additive Notation of Abelian Group
Modular Addition of 10 - Abelian Group
Modular Multiplication of 10 - Not Abelian Group
Modular Multiplication of 11 - Abelian Group
Abelian Group on Elliptic Curve
Discrete Logarithm Problem (DLP)
Generators and Cyclic Subgroups
tinyec - Python Library for ECC
ECDH (Elliptic Curve Diffie-Hellman) Key Exchange
ECDSA (Elliptic Curve Digital Signature Algorithm)